Identifying First X-ray Sources

Anastasia Fialkov, ITC Fellow, Harvard

HEAD Meeting August 21, 2017

The Universe after the Big Bang

Image: Loeb, Scientific American 2006

High-redshift Environment

Theory predicts:

- Cold metal-poor medium between rare star forming regions
- Small halos
- Diverse populations: small black holes, heavy stars, pair instability SN, variety of X-ray sources
- Massive star formation via H_2 ($M_h \gtrsim 10^5 M_{\odot}$) or HI ($M_h \gtrsim 10^7 M_{\odot}$)
- Supersonic motion between baryons and gas on large scales & radiative feedbacks (e.g., LW feedback) suppress star formation

21-cm Signal of HI

Probe of the ionization state $\delta T_b \sim x_{HI}$...

21-cm Signal of HI

Probe of the ionization state $\delta T_b \sim x_{HI}$...

Not only!

It can also be used as a cosmic thermometer

$$\delta T_b \sim x_{HI} \left[1 - \frac{T_{CMB}}{T_S} \right] \dots$$

- Ly-a coupling $\rightarrow T_S \approx T_{Gas}$
- Collisional coupling $\to T_S \approx \overline{T_{Gas}}$

21-cm Signal of HI

Probe of the ionization state $\delta T_b \sim x_{HI}$...

Not only!

It can also be used as a cosmic thermometer

$$\delta T_b \sim x_{HI} \left[1 - \frac{T_{CMB}}{T_S} \right] \dots$$

- Ly-a coupling $\rightarrow T_S \approx T_{Gas}$
- Collisional coupling $\rightarrow T_S \approx T_{Gas}$

Not only! It can also be used as a cosmological probe $\delta T_b \propto x_{HI} \left[1 - \frac{T_{CMB}}{T_c}\right] (1 + \delta)...$

- Growth of structure
- Total optical depth for the CMB (e.g., Liu et al. 2016)
- Nature of dark matter

Expected 21-cm Signal: An Example

Large Uncertainty in Astro Parameters

 $\sim 10^4$ different models

Star formation, 2 parameters + feedbacks Heating, 3 parameters

Hirano et al.

(2014)

EoR 2 parameters

Fialkov, Cohen, Barkana (in prep)

- Currently very weak observational constraints
- Exact shape and amplitude of the 21-cm signal are unconstrained
- Both detection and non-detection will transform our understanding

Power Spectra

1+zk=0.1 15 35 10 10⁴ ~200 models 10³ 10² $k^3P(k)/2\pi^2~[{\rm mK}^2]$ 10 ¹ 10⁰ 10⁻² 10 ⁻³ Coming out soon! 10 ⁻⁴ 60 90 120 150 180 30

Global 21-cm

Cohen, Fialkov, Barkana (in prep)

Cohen, **Fialkov**, Barkana (submitted)

Signature of X-ray Sources

Dark matter annihilation (ESO image)

X-ray binaries?

Thermal emission from galaxies?

Black holes, mini quasars?

Dark matter annihilation?

Cosmic rays?

Magnetic fields?

A quasar

Important Properties of X-ray Sources

- X-ray efficiency (effect of metallicity)
- SED (XRB/quasars vs hot gas)
- Absorption (ISM of the host)
- Growth of population with redshift (XRB vs quasars)

Effects of First X-ray Sources on the Environment

- X-rays can easily escape from their host galaxies
- Heat and ionize IGM 10-1000 Mpc away from the source
- Temperature of the IGM fluctuates (non-homogeneous distribution of X-ray sources)

Fialkov & Barkana (2014)

21-cm Signal as a Cosmic Thermometer

Signature in the Global Signal

Global 21-cm

Fialkov & Barkana (2014)

Hard vs Soft SED

- Heating fluctuations are washed out
- No X-ray peak!
- Gas can be hot or cold during EoR

Power Spectrum vs z

XRB vs Quasars

XRBs

- $L_X \propto f_X \times SFR$
- Absorption
- Hard SED

Quasars:

- Multi-colour Shakura-Sunyaev accretion disc
- M- σ relation (Internal feedback model for M_{BH})
- Eddington luminosity

21-cm measures growth of population of X-ray sources in time

Limits on Cosmic Heating History Chandra + 21-cm

- Extragalactic CXB from high-z $< 7 \times 10^{-12} \ [erg \ cm^{-2}s^{-1}deg^{-2}]$ (Cappelluti et al. 2017)
- Unresolved extragalactic CXB yields upper limit on f_X
- 21-cm experiments set lower limit on f_X
- Hard sources are more efficient in producing CXB (lower max f_X)

International Effort to Observe HI

EDGES Observational Constraints 3.5 SPT 1σ (2015)Spectra of high-z Planck I quasars, galaxies, and (2016) I gamma ray bursts $z_r = 8.5$ Greig & Robertson + Mesinger (2015)(2017)Mitra+ (2015)SPT (2015) $\Delta z = 1.3$ 1σ 2σ **EDGES** (2017)10

Monsalve et al. 2017

 z_r

Work in progress: how does it map to the astrophysical parameter space

Aspen Meeting

Cosmological Signals from Cosmic Dawn to the Present Feb 4-10, 2018

- Line intensity mapping
- The 21-cm signal from EoR and cosmic dawn
- First UV and X-ray sources
- Physics of reionization and cosmic dawn

Organizers: Anastasia Fialkov, Tzu-Ching Chang, Rennan Barkana, Judd Bowman, Adam Lidz, Anthony Pullen.

Conclusions

- 21-cm is a cosmic thermometer, clock and radiometer!
- Promising probe of high-z Universe
- Can tell apart hard vs soft X-ray sources and constrain mfp
- Tracks growth of X-ray population with redshift
- Experiments are getting close

